Search results

Search for "methanol oxidation" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • electrocatalytic applications is demonstrated using the methanol electro-oxidation as a test reaction. The Pt mass specific activity towards methanol oxidation of Pt-CNT/CNT/GC is approximately 2.5 times higher than that of Pt-CNT/GC, and the hierarchical electrode exhibits a more negative onset potential. Both
  • structures demonstrate an exceptionally high poisoning tolerance. Keywords: chemical vapor deposition; CNTs; CO stripping; hierarchically structured electrodes; methanol oxidation; platinum; poisoning tolerance; Introduction Carbon nanotubes (CNTs) have attracted considerable attention since their
  • ][5][6][7][8]. Besides the above-mentioned applications, CNTs have also been investigated as catalysts or catalyst supports for various electrocatalytic reactions [8][9][10][11][12][13], including methanol oxidation in direct methanol fuel cells (DMFCs). DMFCs are promising power sources for future
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • p-nitrophenol reduction to p-aminophenol, i.e., for liquid phase reaction [12][13][14], we utilized the 3D BN/Ag HNMs for the methanol oxidation reaction, i.e., for the gas phase reaction. In the latter case, the usage of 3D BN NPs appears to be preferential because of higher specific surface area
  • diffusion mobility of Ag atoms within a ceramic film was already observed at 230–240 °C [29]. Surprisingly, however, the obtained results are in contradiction with the thermal stability data reported in the previous section. At present, we can only assume that the methanol oxidation reaction or reaction
  • . Catalytic performance Catalytic activity tests were carried out for both types of the BN/Ag HNMs. The samples were tested with respect to a methanol oxidation reaction in a fixed-bed continuous-flow reactor at the atmospheric pressure. 40 mg (0.1 cm3) of BN/Ag HNMs were mixed with 0.4 cm3 of quartz pellets
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations

  • Aldo S. Gago,
  • Juan-Pablo Esquivel,
  • Neus Sabaté,
  • Joaquín Santander and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2015, 6, 2000–2006, doi:10.3762/bjnano.6.203

Graphical Abstract
  • CH3OH. The Pt–Ru-based anode is the most active binary electrocatalyst for DMFCs. The high activity of Pt–Ru for methanol oxidation has been attributed to both a bifunctional mechanism [24] and a ligand (electronic) effect [25]. The bifunctional mechanism of Pt and Ru involves the adsorption of oxygen
  • cathode, at a given current density, decreases gradually, 0.88 to 0.6 V vs RHE, as the fuel concentration increases. The reason is that the fuel crossover effect (mixed-potential developed between the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR)) is more important [31]. The
PDF
Album
Full Research Paper
Published 07 Oct 2015

Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers

  • Deborah Vidick,
  • Xiaoxing Ke,
  • Michel Devillers,
  • Claude Poleunis,
  • Arnaud Delcorte,
  • Pietro Moggi,
  • Gustaaf Van Tendeloo and
  • Sophie Hermans

Beilstein J. Nanotechnol. 2015, 6, 1287–1297, doi:10.3762/bjnano.6.133

Graphical Abstract
  • (CNF)) are well suited as anodes for direct methanol fuel cells (DMFC) [6][7][8][9], which hold much prospect as a portable energy source for mobile devices. The electrocatalytic activity of Pt–Ru/CNF [7] or Pt–Ru/MWNT [10] composite electrodes for methanol oxidation is found to be better than that of
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2015

Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters

  • Subarna Khanal,
  • Ana Spitale,
  • Nabraj Bhattarai,
  • Daniel Bahena,
  • J. Jesus Velazquez-Salazar,
  • Sergio Mejía-Rosales,
  • Marcelo M. Mariscal and
  • Miguel José-Yacaman

Beilstein J. Nanotechnol. 2014, 5, 1371–1379, doi:10.3762/bjnano.5.150

Graphical Abstract
  • electrocatalytic performance towards the oxidation of CO [18][19], methanol oxidation reactions (MOR) [20][21][22][23][24], polymer electrolyte membrane fuel cells (PEMFCs) [15][25][26][27][28], hydrogen storage [29][30], and detecting hydrogen [31]. For instance, Wu et al. [32] studied a series of Pt-based
  • sizes. Recently, several groups have worked on the synthesis of CuPt core–shell and alloys nanoparticles, obtaining morphologies such as nanotubes, cubes, spheres, hollow structures and others [36][37][38][39]. These particles exhibit excellent catalytic activities for CO oxidation, methanol oxidation
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2014

Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst

  • Hongwang Wang,
  • Jim Hodgson,
  • Tej B. Shrestha,
  • Prem S. Thapa,
  • David Moore,
  • Xiaorong Wu,
  • Myles Ikenberry,
  • Deryl L. Troyer,
  • Donghai Wang,
  • Keith L. Hohn and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2014, 5, 760–769, doi:10.3762/bjnano.5.88

Graphical Abstract
  • been developed [34][35][36][37][38][39][40][41]. The application of such materials in cancer diagnosis and cancer treatment, such as MRI and magnetic hyperthermia are intensively studied [42][43][44]. The use of iron-containing nanomaterials as catalysts for the methanol oxidation reaction [45], and
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2014

Adsorption and oxidation of formaldehyde on a polycrystalline Pt film electrode: An in situ IR spectroscopy search for adsorbed reaction intermediates

  • Zenonas Jusys and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2014, 5, 747–759, doi:10.3762/bjnano.5.87

Graphical Abstract
  • that for all three C1 species, methanol, formaldehyde and formic acid, the reaction proceeds in a dual pathway mechanism (methanol oxidation [2][3][4][5], formaldehyde oxidation [6], formic acid oxidation [7][8]), with an indirect pathway proceeding via formation and subsequent oxidation of COad and a
  • dehydrogenated species, e.g., by spectroscopic observation, however, is still missing. In two early in situ IR spectroscopy studies on methanol oxidation, the authors reported the observation of weak bands at 1215 and 1270 cm−1, which they attributed to adsorbed –CHxOH [42] or –COH [43] intermediates
PDF
Album
Supp Info
Full Research Paper
Published 30 May 2014
Other Beilstein-Institut Open Science Activities